3.2 SKEWER CONTOUR MAPPING

How can you map what you cannot see?

MATERIALS

Per small group of students:

- Calibrated skewer with depth marks every half inch, up to 3 inches (1/2, 1, 11/2, etc.)
- Styrofoam sandwich box with stationary objects inside (i.e. rocks, potatoes, etc.)
- Grid Map placed on top of Styrofoam box

DIRECTIONS

- 1. Select a calibrated skewer and a blank grid paper to record depth measurements.
- Take depth measurements at all points. Record all measurements on the blank grid. Most measurements won't be exactly on a number, so round to the nearest half inch.
- 3. Contour map the data by drawing a line to connect depths of the same number. *Follow these rules:*
 - a. Each contour line must pass through all points of equal depth.
 - b. Each contour line must pass on the low side of higher or shallower points.
 - c. Each contour line must pass on the high side of lower or deeper points.
 - d. Contour lines never cross.

REFLECTION

- 1. Why is contour mapping important to the crude oil and natural gas industry?
- 2. What are the geologists looking for?
- 3. How can you map what you cannot see?
- 4. What technology has increased the accuracy of contour mapping?
- 5. What technology does the oil and gas industry use before it drills on land or offshore?

1	2	3	4	5	6	7
×	×	×	×	×	×	×
8	9	10	11	12	13	14
×	×	×	×	×	×	×
15	16	17	18	19	20	21
×	×	×	×	×	×	×
22	23	24	25	26	27	28
×	×	×	×	×	×	×
29	30	31	32	33	34	35
×	×	×	×	×	×	×
36	37	38	39	40	41	42
×	×	×	×	×	×	×
43	44	45	46	47	48	49
×	×	×	×	×	×	×
50	51	52	53	54	55	56
×	×	×	×	×	×	×