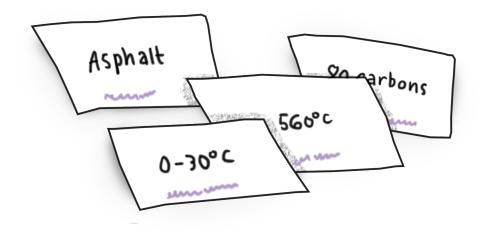
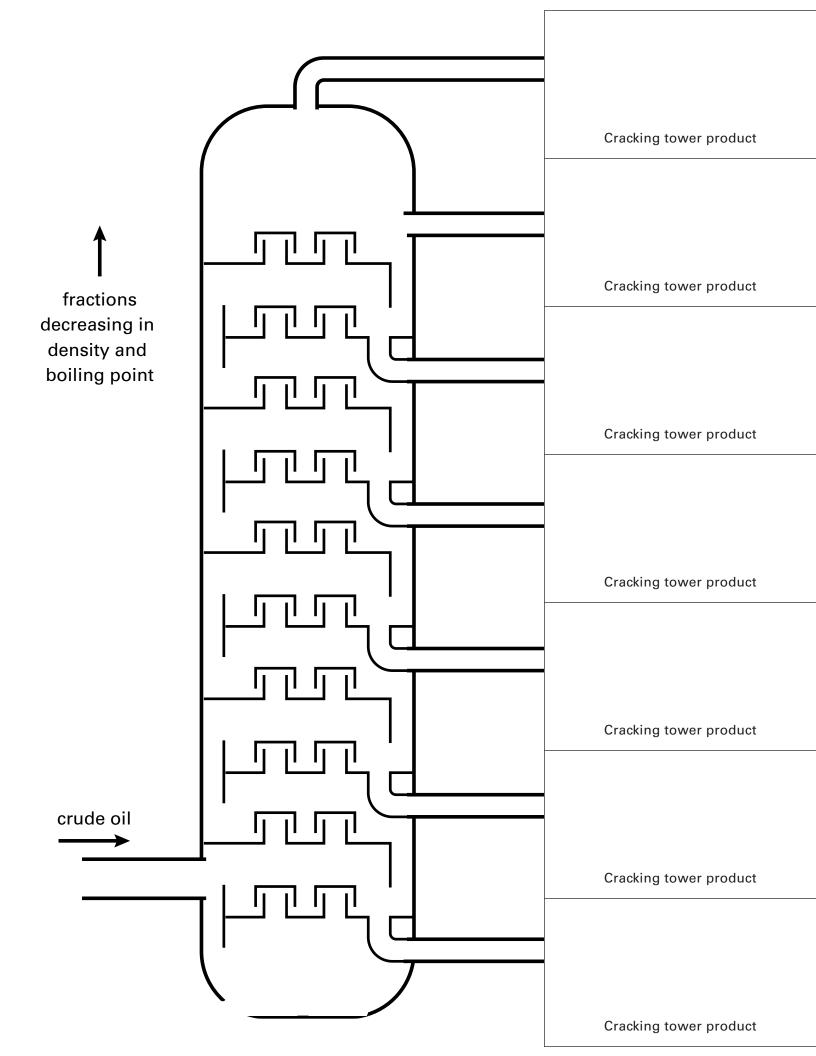
6.2 REFINERY CARD SORT

How does a refinery work?

MATERIALS

- Cracking/Distillation Tower drawing
- Refinery Cards
- Scissors


DIRECTIONS


- Distribute copies of the cracking/distillation tower and refinery cards. Instruct students to cut cards out.
- 2. Use the distillation tower drawing as a template for arranging the cards.
- 3. Have students check with teacher to see if the proper order and products matched.

REFLECTION

- 1. What is the relationship between the number of carbons and the boiling point?
- 2. Where would you expect to find both the highest boiling point and the lowest boiling point in the cracking/distillation tower?
- 3. In general, what differences do you see among the end products and their location in the cracking/distillation tower?

Cracking tower product	Number of carbons	Boiling point	End product	
Light gas	1–4	0–30 °C	Bottled and natural gas, propane and butane	
Naphtha	5–10	30–180 °C	Gasoline	
Kerosenes	10–16	180–260 °C	Kerosene for home heaters, jet fuel	
Gas oils	16–60	260-350 °C	Diesel fuel, feedstock for cracking	
Lubricants	> 60	350–575 °C	Motor oils	
Fuel oil	> 70	> 490 °C	Candles, fuel oil for ships and power stations	
Asphalt	> 80	> 580 °C	Roofing tar, road tar	

Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product
Number of carbons	Boiling point	End product

1–4 carbons	Light gas	 Naphtha	> 490 °C
Number of carbons	Cracking tower product	Cracking tower product	Boiling point
350–575 °C Boiling point	0–30 °C	Bottled and natural gas, Propane and Butane End product	Gasoline End product
Diesel fuel, feedstock for cracking End product	5–10 carbons Number of carbons	Asphalt Cracking tower product	16–60 carbons Number of carbons
Gas oils Cracking tower product	30–180 °C Boiling point	> 60 carbons Number of carbons	Motor oils End product
10–16 carbons Number of carbons	> 70 carbons Number of carbons	Kerosene for home heaters, jet fuel End product	260–350 °C Boiling point
180–260 °C Boiling point	Fuel oil Cracking tower product	Roofing tar, road tar	Lubricants Cracking tower product
Kerosenes Cracking tower product	> 580 °C Boiling point	Candles, fuel oil for ships and power stations End product	> 80 carbons Number of carbons